A developmental shift from GABAergic to glycinergic transmission in the central auditory system.

نویسندگان

  • V C Kotak
  • S Korada
  • I R Schwartz
  • D H Sanes
چکیده

GABAergic and glycinergic circuits are found throughout the auditory brainstem, and it is generally assumed that transmitter phenotype is established early in development. The present study documents a profound transition from GABAergic to glycinergic transmission in the gerbil lateral superior olive (LSO) during the first 2 postnatal weeks. Whole-cell voltage-clamp recordings were obtained from LSO neurons in a brain slice preparation, and IPSCs were evoked by electrical stimulation of the medial nucleus of the trapezoid body (MNTB), a known glycinergic projection in adult animals. GABAergic and glycinergic components were identified by blocking transmission with bicuculline and strychnine (SN), respectively. In the medial limb of LSO, there was a dramatic change in the GABAergic IPSC component, decreasing from 78% at postnatal day 3 (P3)-P5 to 12% at P12-P16. There was an equal and opposite increase in the glycinergic component during this same period. Direct application of GABA also elicited significantly larger amplitude and longer duration responses in P3-P5 neurons compared with glycine-evoked responses. In contrast, MNTB-evoked IPSCs in lateral limb neurons were more sensitive to SN throughout development. Consistent with the electrophysiological observations, there was a reduction in staining for the beta2,3-GABAA receptor subunit from P4 to P14, whereas staining for the glycine receptor-associated protein gephyrin increased. Brief exposure to baclofen depressed transmission at excitatory and inhibitory synapses for approximately 15 min, suggesting a GABAB-mediated metabotropic signal. Collectively, these data demonstrate a striking switch from GABAergic to glycinergic transmission during postnatal development. Although GABA and glycine elicit similar postsynaptic ionotropic responses, our results raise the possibility that GABAergic transmission in neonates may play a developmental role distinct from that of glycine.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chloride cotransporters, chloride homeostasis, and synaptic inhibition in the developing auditory system.

The role of glycine and GABA as inhibitory neurotransmitters in the adult vertebrate nervous system has been well characterized in a variety of model systems, including the auditory, which is particularly well suited for analyzing inhibitory neurotransmission. However, a full understanding of glycinergic and GABAergic transmission requires profound knowledge of how the precise organization of s...

متن کامل

Developmental regulation of inhibitory synaptic currents in the dorsal motor nucleus of the vagus in the rat.

Prior immunohistochemical studies have demonstrated that at early postnatal time points, central vagal neurons receive both glycinergic and GABAergic inhibitory inputs. Functional studies have demonstrated, however, that adult vagal efferent motoneurons receive only inhibitory GABAergic synaptic inputs, suggesting loss of glycinergic inhibitory neurotransmission during postnatal development. Th...

متن کامل

Staggered development of GABAergic and glycinergic transmission in the MNTB.

Maturation of some brain stem and spinal inhibitory systems is characterized by a shift from GABAergic to glycinergic transmission. Little is known about how this transition is expressed in terms of individual axonal inputs and synaptic sites. We have explored this issue in the rat medial nucleus of the trapezoid body (MNTB). Synaptic responses at postnatal days 5-7 (P5-P7) were small, slow, an...

متن کامل

Transition from GABAergic to glycinergic synaptic transmission in newly formed spinal networks.

The role of glycinergic and GABAergic systems in mediating spontaneous synaptic transmission in newly formed neural networks was examined in motoneurons in the developing rat spinal cord. Properties of action potential-independent miniature inhibitory postsynaptic currents (mIPSCs) mediated by glycine and GABA(A) receptors (GlyR and GABA(A)R) were studied in spinal cord slices of 17- to 18-day-...

متن کامل

GABAergic and glycinergic inhibitory synaptic transmission in the ventral cochlear nucleus studied in VGAT channelrhodopsin-2 mice

Both glycine and GABA mediate inhibitory synaptic transmission in the ventral cochlear nucleus (VCN). In mice, the time course of glycinergic inhibition is slow in bushy cells and fast in multipolar (stellate) cells, and is proposed to contribute to the processing of temporal cues in both cell types. Much less is known about GABAergic synaptic transmission in this circuit. Electrical stimulatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 18 12  شماره 

صفحات  -

تاریخ انتشار 1998